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Sierra node is a POWER9 2 Socket Server

2x POWER9

5%
FLOPS

I Use the CPUs
as well

4x Volta

95%
FLOPS

I Use the GPUs
effectively
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Ways to utilize a node of Sierra (showing one socket)

CPU

GPU GPU
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1. Single MPI task per GPU

← launching big kernels?

2. Single MPI task per core

← launching many small kernels?
I Multiple MPI tasks per GPU with Multi-Process Service (MPS)

3. Heterogeneous MPI tasks

← when 1 core sufficient to drive GPU?
I Single MPI task per core
I Some compute, some ‘drive’ the GPU

⇒ Hard to project performance to future hardware
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Heterogeneous MPI tasks
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE
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1. Control code
I Some MPI processes ‘drive’ the GPUs
I Other MPI processes compute on the CPU cores
I Be careful about the CPU core/GPU binding!

2. Memory allocation

I Allocate the memory according to the task of the particular CPU core
I This was fairly straight-forward for a spatially decomposed MPI

application where each MPI process owns its data

3. Loop execution

I Portability: same source code?
I Proof of concept implementation in ARES using RAJA

4. Communication

I Haven’t explored GPU direct yet
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ARES is a massively parallel, multi-dimensional,
multi-physics code [from Brian Ryujin’s slides]

Physics Capabilities:
I ALE-AMR Hydrodynamics
I High-order Eulerian Hydrodynamics
I Elastic-Plastic flow
I 3T plasma physics
I High-Explosive modeling
I Diffusion, SN Radiation

I Particulate flow
I Laser ray-tracing
I MHD
I Dynamic mixing
I Non-LTE opacities

Applications:
I ICF modeling
I Pulsed power
I NIF Debris
I High-Explosive experiments
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Heterogeneous

memory allocation
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE
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I Differentiate memory use by context
I Malloc - CPU control code
I cudaMallocManaged(UM) - mesh data (accessed on CPU & GPU)
I cudaMalloc (cnmem memory pools) - Temporary GPU data

I Use control code to inject additional context

I If the MPI process is ‘driving’ the GPU, do the above
I If the MPI process is executing loops on the CPU core, allocate

everything on the CPU

I Gotchas

I Dependencies may assume that ‘USE_CUDA’ == allocate on GPUs
I Touching UM from the CPU-only MPI process will slow things down
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Heterogeneous

loop execution
in ARES

CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

1: RAJA::forall<AresPolicy>(. . . , kernel);

I AresPolicy: not thread safe, thread safe, etc.

I AresArchPolicy: At runtime, select the appropriate policy according
to where want to execute (future: MultiPolicy in RAJA)

1: if (run_on_gpu) then
2: //RAJA backend: GPU specific (CUDA, OpenMP)
3: typedef DynamicPolicy<AresPolicy, GPU> AresArchPolicy;
4: RAJA::forall<AresArchPolicy>(. . . , kernel);
5: else
6: //RAJA backend: CPU specific (Serial, OpenMP)
7: typedef DynamicPolicy<AresPolicy, CPU> AresArchPolicy;
8: RAJA::forall<AresArchPolicy>(. . . , kernel);
9: end if
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Heterogeneous

domain decomposition
in ARES
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1MPI/GPU

4MPI/GPU + MPS Heterogeneous

I Use hierarchical decomposition for Heterogeneous approach
I Decomposition impacts memory accesses
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Performance comparison
I ARES, 3D Sedov problem
I rzhasgpu, CUDA RAJA backend1

I Baseline: 1MPI/GPU
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I Size of inner-loop dimension impacts performance

1All results generated with pre-release versions of IBM compilers; improvements in performance expected in future releases
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Best: 1MPI/GPU
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I Baseline: 1MPI/GPU
I When inner-loop dimension is large

I Memory use is optimal with 1MPI/GPU (4MPI/GPU results in smaller
inner-loop dimension)

I Can’t take a small enough chunk of work to give to the CPU
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Best: Heterogeneous
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Hetero

I Memory use the same as for 1MPI/GPU (slice in Y dimension)
I When Y dim. is large, can give smaller portions of work to CPU

I Right now, only give 1-2% of work to the CPU

I __host__ __device__ decorated lambdas are significantly slower
when running on the CPU because nvcc passes the lambda back to
the host compiler wrapped in a std::function object.
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Best: 4MPI/GPU+MPS
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I In all of these cases, ARES decomposition didn’t cut further in X
dimensions because Y and Z dimensions were large

I Memory use the same as for 1MPI/GPU

I MPS may be beneficial if we use a special hierarchical
decomposition

I Performance with MPS keeps changing - keep reevaluating
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Heterogeneous
load balancing CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I ‘Direction’ of split certainly impacts memory performance
I Have to take into consideration memory access overhead, data

transfer overhead, kernel launch overhead, etc.

Related work:
Heterogeneous task scheduling for accelerated OpenMP. Thomas R.W.
Scogland, Barry Rountree, Wu-Chun Feng, Bronis R. de Supinski.
Parallel & Distributed Processing Symposium (IPDPS), May 2012.

I Proposed changes to OpenMP which allow task scheduling on
both the CPU and GPU

I Calculated the ratio for splitting the iterations via a linear program
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Conclusions
CPU

GPU GPUE EE E

E EE EE EE EE EE EE EE EE EE EEE

E EE E

I Proof of concept implementa-
tion for utilizing the GPUs and
all CPU cores to perform loop
computation in ARES

I Performance portability courtesy of RAJA
(same source code for CPU and GPU)

I Divide work via domain decomposition
I Load balancing between the CPUs and GPUs is non-trivial
I Compared performance of the 1MPI/GPU implementation,

heterogeneous implementation, and 4MPI/GPU+MPS
I Performance with MPS is likely to change
I Memory access pattern dominates performance
I ‘Square’ domains may no longer be optimal
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